Skip to content

Publications

  1. Harding, C., Bischoff, M., Bergkessel, M., Czekster, C.M. (2022) Unravelling the mechanism of autoinhibition by Pseudomonas aeruginosa aminopeptidase enables the development of a potent antibiofilm cyclic peptide. Preprint Research Square https://doi.org/10.21203/rs.3.rs-2305070/v1
  2. Sutherland, E., Harding, C, Czekster, CM. (2022) Active site remodelling of a cyclodipeptide synthase redefines substrate scope. Communications Chemistry 5, Article number: 101
  3. Sweeney, P., et al (2022) Structure, dynamics, and molecular inhibition of the Staphylococcus aureus m1A22-tRNA methyltransferase TrmK. Journal of Biological Chemistry 298:102040.
  4. Harding, C.J., Sutherland, E., Hanna, J.G., Houston, D.R., Czekster, C.M. (2021) Bypassing the requirement for aminoacyl-tRNA by a cyclodipeptide synthase enzyme. RSC Chem. Biol. 2: 230-240.
  5. Athukoralage, J.S., Graham, S., Rouillon, C., Grüschow, S., Czekster, C.M., White, M.F. (2020) The dynamic interplay of host and viral enzymes in type III CRISPR-mediated cyclic nucleotide signalling. eLife 9: e55852.
  6. iGEM Interlab Study Contributors, Czekster, C.M & Powis, S. J., (2020) Robust estimation of bacterial cell count from optical density. Communications Biology 3, 512.
  7. Ge, Y., Czekster, C.M., Miller, O.K., Botting, C.H., Schwarz-Linek, U., Naismith, J.H. (2019) Insights into the mechanism of the cyanobactin heterocyclase enzyme. Biochemistry 58:2125-2132.
  8. Fisher, G., Thomson, C.M., Stroek, R., Czekster, C.M., Hirshi, J.S., da Silva, R.G. (2018) Allosteric Activation Shifts the Rate-Limiting Step in a Short-Form ATP Phosphoribosyltransferase. Biochemistry 57:4357-4367.
  9. Ludewig, H., Czekster, C.M.Oueis, E., Munday, E.S., Arshad, M., Synowsky, S.A., Bent, A.F., Naismith, J.H. (2018) Characterization of the fast and promiscuous macrocyclase from plant PCY1 enables the use of simple substrates. ACS Chem Biol 13:801-811.
  10. Czekster, C.M., Ludewig, H., McMahon, S.A., Naismith, J.H. (2017) Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nature Communications 8 Article number: 1045.
  11. Carroll, C.S., Grieve, C.L., Murugathasan, I., Bennet, A.J., Czekster, C.M., Liu, H., Naismith, J.H., Moore, M. M. (2017) The rhizoferrin biosynthetic gene in the fungal pathogenRhizopus delemar is a novel member of the NIS gene family. The International Journal of Biochemistry & Cell Biology 89: 136-146.
  12. Czekster,M., Naismith, J.H. (2017) Kinetic landscape of a peptide-bond-forming prolyl oligopeptidase. Biochemistry 56: 2086-2095.
  13. Czekster, C.M.*, Robertson, W.*. Walker, A.S., Wang, S.P., Schepartz, A. (2016) In Vivo Biosynthesis of a β-Amino Acid-Containing Protein. Am. Chem. Soc.138(16):5194-7.  (*equal contribution)
  14. Wang, Z., Singh, P., Czekster, C.M., Kohen, A., Schramm, V.L. (2014) Protein Mass-modulated effects in the catalytic mechanism of dihydrofolate reductase: beyond promoting vibrations. Am. Chem. Soc. 136: 8333-8341.
  15. Czekster, C.M. and Blanchard, J.S. (2012) One Substrate and Five Products: Kinetic Studies on the Reactions Catalyzed by Dihydroneopterin Aldolase from Mycobacterium tuberculosis. Am. Chem. Soc. 134:19758–19771. Featured in Spotlights on JACS Publications.
  16. Czekster, C.M., Vandemeulebroucke, A. and Blanchard, J.S. (2011) Two Parallel Pathways in the Kinetic Sequence of the Dihydrofolate Reductase from Mycobacterium tuberculosis. Biochemistry 50:7045‐56. (Corresponding author)
  17. Magalhaes, M.L., Czekster, C.M., Guan, R., Malashkevich, V.N., Almo, S.C. and Levy, M. (2011) Evolved Streptavidin Mutants Reveal Key Role of Loop Residue in High‐affinity Binding. Protein Sci. 20:1145‐54.
  18. Czekster, C.M., Vandemeulebroucke, A. and Blanchard, J.S. (2011) Kinetic and Chemical Mechanism of the Dihydrofolate Reductase from Mycobacterium tuberculosis. Biochemistry 50:367‐375.
  19. Czekster, C.M., Neto, B.A., Lapis, A.A., Dupont, J., Santos, D.S. and Basso, L.A. (2009) Steady‐state Kinetics of Indole‐3‐Glycerol Phosphate Synthase from Mycobacterium tuberculosis. Biochem. Biophys. 486:19‐26
  20. Czekster, C.M., Lapis, A.A., Souza, G.H.M.F., Eberlin, M.N., Santos, D.S., Basso, L.A., Dupont, J. and Neto, B.A. (2008) The Catalytic Mechanism of Indole‐3‐ Glycerol Phosphate Synthase Investigated by Electrospray Ionization (tandem) Mass Spectrometry. Lett. 29: 5914‐5917.
  21. Dias, M.V., Canduri, F., da Silveira, N.J., Czekster, C.M., Basso, L.A., Palma, M.S., Santos, D.S. and de Azevedo, W.F Jr. (2006) Molecular Models of Tryptophan Synthase from Mycobacterium tuberculosis Complexed with Inhibitors. Cell Biochem. Biophys. 44:375‐84.

Reviews and book chapters

  1. Czekster,M.Ge, Y., Naismith, J.H. (2016) Mechanisms of cyanobactin biosynthesis. Curr. Opin. Chem. Biol. 35:80-88.
  2. Czekster, C.M., Naismith, J.H. (2017) The biosynthesis of cyclic peptides – RiPPs – overview. In Cyclic peptides – from bioorganic synthesis to applications. Royal Society of Chemistry ISBN-13: 978-1782625285.

Patents

  1. UK patent application 2216121.0 – Antimicrobial peptides, Inventors Harding, C.J., Czekster, C.M.
  2. United Kingdom (UK) Patent and trademark office patent application 1714372.8 “Macrocyclization tags”. Inventors Ludewig, H., Czekster, C.M., Naismith, J.H.
  3. US Patent and trademark office provisional patent application US2017/023005 “Designer ribosomes and methods of use thereof for incorporating non-standard amino acids into polypeptides”. Inventors Schepartz, A., Robertson, W., Czekster, C.M.